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Molecular Recognition and the Design of Solid State Structures: Protonation-induced
Conformational Change and Self-assembly of 2,6-Diamidopyridinium Phosphates

Steven J. Geib, Simon C. Hirst, Cristina Vicent and Andrew D. Hamilton*
Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA

Protonation of 2,6-diamidopyridine with diaryl phosphates leads to a conformational change in the pyridine from
inwardly to outwardly directed amide-NH groups and a resultant self-assembly of the anion and cation into an

alternating cocrystal with a novel hydrogen bonding motif.

The rational design of new solid state structures represents an
important challenge in modern organic chemistry that has
implications in the development of non-linear optical, con-
ducting, magnetic and molecular electronic systems.I A
particular goal involves the construction of solids with an
ordered and predictable arrangement of two or more mol-
ecular components. To achieve this, carefully positioned
interacting groups must be incorporated into the two com-
ponents to provide both direction and orientation to the
cocrystal. Hydrogen bonds have been extensively used to this
end since they can be readily incorporated into and provide a
complementary link between different subunits.2 However,
the directionality of the hydrogen bonding groups plays a
critical role in determining molecular properties. In molecular
recognition, hydrogen bonding sites are usually directed
inwards (or endo) to converge on a central cleft or cavity. The
result is a receptor that can form discrete 1 : 1 complexes witha
complementary substrate (Fig. 14).3 In contrast, positioning
the hydrogen bonding groups in an outwards (or exo) direction
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Fig. 1 Hydrogen bonding sites: (4) directed inwards; (B) directed
outwards

can lead to a self-assembly of the same components into an
alternating polymeric complex (Fig. 1B).45

This simple relationship between binding group directional-
ity and function prompted our search for a single component
that would, under different conditions, serve as either a
convergent receptor or a self-assembling subunit. Such a
component might then switch between structures as a function
of environment and so provide a macroscopic expression of
microscopic molecular changes.®

Acylated mono- and di-aminopyridine derivatives have
been used extensively in the design of synthetic molecular
receptors.? In every case where an X-ray crystal structure is
available, both substrate-free8 and substrate-bound8¢.% forms
of the receptors have been shown to take up the parallel
orientation of hydrogen bonding sites shown in Fig. 2.8c This
conformation is expected owing to a favourable electrostatic
interaction betweeen the pyridine-N and amide-NH groups,
and corresponds to an inwardly (or endo) directed receptor
capable of multiple H-bonding to a single substrate (as in Fig.
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Fig. 2 Parallel hydrogen bonding arrangements in acylaminopyridine
receptors
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Fig. 3 Effect of protonation on hydrogen bonding orientation

NO, NO,

Fig. 4 X-Ray crystal structure of 2,6-dibutyramidopyridinium bis(4-
nitrophenyl)phosphate

1A4). A repulsive interaction can be introduced and the
parallel orientation can be destabilized by simply protonating
the pyridine ring. This should lead to a rotation about the
pyridine-amide bond and formation of two intramolecular
hydrogen bonds to the carbonyl oxygen (Fig. 3). The resulting
conformation (Fig. 3B) now contains two outwardly (or exo)
directed amide-NH groups capable of intermolecular
hydrogen bonding.

Addition of one equivalent of bis(4-nitrophenyl) hydrogen
phosphate 1 to a CH,Cl, solution of 2,6-dibutyramidopyridine
2 leads to a decrease in the electronic absorption at 292 nm and
the formation of a new maximum at 325 nm. This is similar
behaviour to that seen on bubbling HCI through a CH,Cl,
solution of 2 and corresponds to protonation of the pyridine
ring. Colourless triclinic crystals of 2,6-dibutyramidopyridi-
nium bis(4-nitrophenyl)phosphate were grown by diffusion of
hexane into a toluene solution of 1 and 2.} The X-ray structure
is shown in Fig. 4 and confirms the formation of an alternating
hydrogen-bonded cocrystal (as in Fig. 1B). The pyridine ring
is protonated [pyrN---H distance, 0.81(5)A] and two intra-
molecular hydrogen bonds are formed to the carbonyl-oxygen
atoms [H--- O, 1.97(5), 2.03(5) A]. The amide-NH groups
project outwards and form hydrogen bonds to the two oxygens
of a bridging phosphodiester [NH --- OP, 1.89(5), 1.98(6)A].
Overall, the structure shows a highly ordered assembly of the
two components into a ribbon arrangement with the inter-
molecular hydrogen bond network at its core. The nature and
direction of these interactions control the specific features of
the structure. In particular, the anions and cations are
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Fig. 5 X-Ray crystal structure of 2,6-dibutyramidopyridinium (R)-
(—)-1,1'-binaphthyl-2,2’-diyl phosphate

segregated onto opposite sides of the ribbon and take up a
parallel alignment to each other.

The organizing features apparent in Fig. 4 seem to be
general. A similar type of alternating cocrystal structure
results when equimolar amounts of 2,6-dibutyramidopyridine
and diphenyl hydrogen phosphate are mixed.10 Furthermore,
asymmetry can be introduced into the structure by using
optically active phosphodiesters. A 1:1 mixture of (R)-(—)-
1,1’-binaphthyl-2,2'-diyl hydrogen phosphate and 1 gave, on
slow evaporation from a tetrahydrofuran solution, ortho-
rhombic crystalst with the structure shown in Fig. 5. Again,
the hydrogen-bond network serves to align the two com-
ponents into a highly ordered and parallel structure. This
arrangement, coupled with the non-centrosymmetric nature
of the crystal, holds potential for the design of solids with
interesting optical properties.

In summary, we have demonstrated that 2,6-diacylamino-
pyridines undergo a discrete conformational change on
protonation from an inwardly to an outwardly directed
hydrogen-bonding receptor. When diaryl hydrogen phos-
phates serve as the acid a self-assembly takes place to form an
ordered cocrystal with alternating acidic and basic subunits
linked by a thread of hydrogen bonds. This motif appears to be
general and offers an approach to the construction of new
solid state structures with predictable arrangements of chiral,
photoactive or redox-active subunits.

We thank the US Army Research Office and National
Institutes of Health (GM 35208) for financial support of this

t Crystal data for C,sHpgNsOoP: triclinic, P1; a = 10.442(3), b =
11.353(3), ¢ = 13.153(4) A, « = 87.70(2), f = 80.37(2), y = 67.24(2)°,
V=1415.1(7) A3, Z =2, D. = 1.383 g cm~3,23°C. A Siemens R3Im/E
diffractometer was used to collect 4644 data (4° < 26 < 48°) of which
2454 data with F, = 50 (F,) were used in the solution and refinement.
No absorption correction was necessary {w(Mo-Ka) = 1.53 cm~1].
Structure was solved by direct methods which located all non-
hydrogen atoms. Hydrogen atom positions were calculated {d(C-H)
= 0.96 A] except for nitrogen hydrogens which were located and
refined. Structure refined to Ry = 5.51% and Ry = 6.48%: GOF =
1.38, highest final difference peak, 0.33 e A-3.

Crystal data for Ci33H3oN3OgP: orthorhombic, P2,242;, a =
8.531(2), b = 11.765(2), c = 30.288(6) A, V = 3040(1) A3, Z = 4, D,
= 1.306 g cm—3, 23°C. A Rigaku AFC5R diffractometer was used to
collect 2637 data points (0° < 20 < 120°) of which 1261 data with F, >
5o(F,) were used in the solution and refinement. No absorption
correction was necessary [p(Cu-Ko) = 11.88 cm~—1]. Structure was
solved by direct methods which located all non-hydrogen atoms.
Hydrogen atom positions were calculated [d(C-H) = 0.96 A] except
for nitrogen hydrogens which were located and refined. Structure
refined to Ry = 6.93% and Ry = 9.02%; GOF = 1.75, highest final
difference peak, 0.28 ¢ A-3.

Atomic coordinates, bond lengths and angles, and thermal
parameters for both compounds have been deposited at the Cam-
bridge Crystallographic Data Centre. See Notice to Authors, Issue
No. 1.
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